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Abstract 

Expressions for pure multipole field components that are present in helical devices have been derived from a 
current distribution on the surface of an infinitely thin cylinderI' of radius R The strength of such magnetic fields 
varies purely as a Fourier sinusoidal series of the longitudinal coordinate z in proportion to cos(nO-wrnz), where 
Wm = (2m

L"1)1I", L denotes the half-period and m=1,2,3 etc. As an alternative to describing such field components 
as given by the negative gradient of a scalar potential function (Appendix A), one of course. can derive these same 
fields as the curle of a vector potential function A - specifically one for which V x V x A = 0 and V . A = O. 
It is noted that we seek a divergence-free vector that exhibits continuity in any of its components across the 
interface r=R, a feature that is free of possible concern when applying Stokes' theorem in connection with this 
form of vector potential. Alternative simpler fonns of vector potential, that individually are divergence-free in 
their respective regions ( r<R and r>R), do not exhibit full continuity on r=R and whose curl evaluations provide 
in these respective regions the correct components of magnetic field are not considered here. Such aJ.ternative 
forms must differ merely by the gradient of scalar functions that with the divergence-free property are required 
to be "harmonic" (V2W = 0). 

A summary of the vector-potential derived in part one is given below. In part two we derive the magnetic 
field components and check the validity of V . A = O. In part three the stored energy is derived from the vector
potential (shown below) and finally in part four we reduce the problem dimensionality to the more familiar 2D 
results by extending the period to infinity. 

r~ : 

AT = ~ ~f, f{~~~=R)[~{n+1{wmR)In+l(wmr) - f{n-l(wmR)In-l(Wmr)] sin (nO -wmz) 

Ao = -~ ~f, f{~~~=R)[f{n+l(wmR)In+1(wmr) + f{n-l(wmR)In-l(wmr)] cos (nO -wmz ) 

... ~ ~ nGn,mf{n(wmR) 
Az=- L,L, RJ('( R) In(wmr)cos(nO-wmz ) 

n=l m=l Wm n Wm 

r~ 

AT = ~ ~ f, f{~~~=R) [In+1 (wmR)f{n+l (wmr) - In- 1(wmR)f{n-l(wmr)] sin (nO - wmz) 

Ao = -~ ~ f, f{~~~=R) [In+l (wmR)f{n+1 (wmr) + I~-l(WmR)f{n-l(Wmr)] cos (nO - wmz) 

... ~ ~ nGn,mIn(wmR) ( ( ) 
Az = -~~ wmRf{~(wmR) f{n wmr) cos nO -WmZ 

and the stored energy density 

2 ' 1 ~~GnmIn 
e = -2 L,L, R2]{' 

J.Lo n m n 

Where In and Kn are the "modified" Bessel function of the first and second kind of order n, aI}d the prime denotes 
differentiation of the Bessel function with respect to its argument 

An alternative form for expressing the vector-potential as Bessel functions and their derivatives of order !! 
.Q!!!y, is given in the text. 

b Magnetic Field Components in a Sinusoidally Varying Helical Wiggler, LBL-35928, SC-MAG-464, July 1994. 
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Analysis 

One may consider a direct evaluation of the vector-potential function through use of the integral formulac 

.. Po J J Jduo 
A(r, 0, z) = 471" If - Tol 

with subscripts 0 on the coordinates to indicate source-point locations. The integration in 2'{) is taken to extend 
from -00 to + 00 and the integration in 00 to extend over an interval of 271". We have undertaken such an 
"evaluation, using for the s,ource an expression consistent with that cited previously in Ref.b : 

(2m -1)71" ( 2 )n 
Wm = L and Gn,m = n!Rn wmR Bn,m 

I
IBI = Bm dipole field I 
2B2 = Gm quad gradient 

nBnm = 
, 3Ba = Sm Sextupole 

Oero 

.. I nL=lmL=1 G'im ](~(~mR) cos (nOo - wmzo)eeo 
J(Oo, ZO)lr=R = --

po "" nGnm I ( )A ~~ wmR2 ](~(wmR) cos nOo -WmZO ezo 

The pair of current density components satisfy the conservation condition \7 . is = * + :k~ = 0 as required. 
We may put 

If - ral = J R2 + r2 + (z - zo)2 - 2Rr cos (0 - (0) 

ezo = ez 
eeo = - sin Ooez + cos Ooey 

= - sin Oo( cos Oer - sin Oee) + cos Oo( sin Oer + cos Oee) 
= sin (0 - Oo)er + cos (0 - Oo)ee 

and introduce working variables t = 00 - 0 and s = Zo - z for the purpose of performing the integration. 

The z component of A 

The z component of the vector-potential may be written as : 

Az = Po J J {_2.. L L nGn m cos (nOo - wmzo) RdOodzo } 
471" Po n=l m=l 'wmR2 ](~(wmR) J R2 + r2 + (z - zO)2 - 2Rr cos (0 - (0) 

Employing the new working variables and the relation, 

c Panofski and Phillips, Ed.2, Eq. (7-42), p.I28 
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cos (nOo - WmZO) = cos (nO - WmZ) cos (Tit -Wms) - sin (nO - wmz) sin (nt - wms) 

we may alternatively write, 

[ 

( 0 ) J J cos (nt - wms)dsdt ] cos n -WmZ 
Az = _!!:... nGn,m V R2 + r2 + s2 - 2Rr cos t 

4?r L L wmR2 K~ (wmR) . ( 0 ) J J sin (nt - Wms )dsdt 
n=l m=l - SIn n - WmZ 

. V R2 + r2 + s2 - 2Rr cos t 

and proceed with the evaluation of the two double integrals. 

• First double integral 
For the first double integral, by referenced and with the understanding that odd functions integrate to 0 over 
±oo 
koo koo koo 

J J cos (nt - Wms )dsdt = J J cos nt cos (wms )dsdt + J J sin nt sin (wms )dsdt 
V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t 

o -00 0 -00 0 -00 

271" 

=2 J Ko(wmVR2+r2-2Rrcost) cos (nt)dt + 0 
o 

In recognition of the "summation theorem'>e and of the orthogonality properties of circular functions and since 
I_n = In and K_n = Kn f the above expression for the double integral can be reduced to (for ~ ) 

27r 271" 00 

2 J Ko (wmvlR2 + r2 - 2Rr cos t) cos (nt)dt = 2 J L Kk(WmR)h(wmr) cos (kt) cos (nt)dt 
o 0 k=-oo 

271" 

= 4 J Kn(wmR)In(wmr) cos2 (nt)dt = 4?rKn(wmR)In(wmr) 
o 

• Second double integral 

d 

e 

f 

Similarly, we show that the second double integral vanishes. 

koo koo koo 

J J sin(nt-wms)dsdt J J sinntcos(wms)dsdt J J cos ntsin (wms)dsdt 
V R2 + r2 + s2 - 2Rr cos t = V R2 + r2 + s2 - 2Rr cos t - V R2 + r2 + s2 - 2Rr cos t 

o -00 0 -00 0 -00 

27r 

=2 J Ko(wmVR2+r2-2Rrcost)sin(nt)dt+O 
o 

I.S. Gradshtyne and I.M. Ryzhik, "Table of Integrals ... ", Eq. 3.754(2). p.419 
G.N. Watson, "Bessel Functions", Sec. 11.3, Eq. (8), p.361, with n=O. 
Abramowitz and Stegun, Chapter 9, Eqs. 9.9.6, p.375. 
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In recognition of the "summation theorem", the orthogonality properties of circular functions and Ln = 
In and 1(-n = 1(n , we may write for r~ 

2;r . 2;r 00 

2 J 1(0 (wm J R2 + r2 - 2Rr cos t) sin (nt)dt = 2 J L 1(k(wmR)h(wmr ~ cos (kt) sin (nt)dt 
o . 0 k=-oo 

2;r 

= 4 J 1(n(wmR)In(wmr) cos (nt) sin (nt)dt = 0 

o 

The expression for the vector-potential may now be written for ~ as, 

and for r~, we may interchange the arguments of the Bessel functions and write, 

and wi~ evident continuity at the interface r=R. 

The r component of X 

In developing the radial component of the vector-potential we shall employ similar technics to those previously 
applied for evaluating Az- The r component of the vector-potential may be written as : 

X =POJJ{-~""",,G cos(nOO-wmzo) sin(O-Oo)dOodzo } 
T 4 ~ ~ n,m ](' ( R) ..j 

1r Po n=lm=l n Wm R2 + r2 + (z - ZO)2 - 2Rrcos (0 - 00) 

with 

cos (nOo - wmzo) = cos (nO - wmz) cos (nt - wms) - sin (nO - wmz) sin (nt - wms) 

and using the working variables as before, we may alternatively write : 

. ' [( 0 ) J J cos (nt - wms) sin tdsdt 1 -cos n -WmZ X __ ~ Gn,m J R2 + r2 + s2 - 2Rr cos t 
T - 41r L L 1(~ (wmR) . ( 0 ) J J sin (nt - wms) sin tdsdt 

n=l m=l + SIn n - WmZ 
J R2 + r2 + S2 - 2Rr COS t 

• First t/Quble integral 
We show that the first double integral in the above expression, vanishes_ With the understanding that odd 
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functions integrate to 0 over ±oo, 

boo koo koo 

1 1 cos (nt - wms) sin tdsdt = 1 1 cos nt cos (wms) sin tdsdt + 1 1 sin nt sin (wms) sin tdsdt 
V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t 

o -00 0 -00 0 -00 

27t' 

= 2 1 Ko (WmVR2 + r2 - 2Rr cost) cos (nt) sin tdt + 0 

o 

and in recognition of the "summation theorem", the orthogonality properties of circular functions, the identities 
I_n = In and K_n = Kn and the fact that 

cos nt sin t = ~[sin (n + l)t - sin (n - l)tJ 

the above expression for the double integral is identically 0, since 

211' 27t' 00 

2 J Ko (WmVR2 + r2 - 2Rr cost) cos (nt) sintdt = 2 J L Kk(WmR)h(wmr ) cos (kt) cos (nt) sintdt 
o 0 k=-oo 

27t' 

• Second double integral 

= 4 J Kn(wmR)In(wmr) cos (nt) cos (nt) sintdt = 0 

o 

Similarly for the second double integral : 

boo koo koo 

1 J sin(nt-wms)sintdsdt =1 J sinntcos (wms) sintdsdt +J 1 cosntsin(wms)sintdsdt 
VR2 + r2 + s2 - 2Rr cos t VR2 + r2 + s2 - 2Rrcost VR2 + r2 + s2 - 2Rrcost 

o -00 0 -00 0 -00 

27t' 

= 2 1 K 0 ( Wm V R2 + r2 - 2Rr cos t) sin (nt) sin tdt + 0 

o 

In recognition of the "summation theorem", the orthogonality properties of circular functions, Ln -
In and K_n = Kn and the fact that 

sin ntsin t = -~[cos (n + l)t - cos (n -l)t] 

we may write for r$R, 

2~ 27t' 00 _ 

21 Ko(WmVR2+r2-2Rrcosi)sin(nt)sintdt=2 1 L Kk(WmR)Ik(wmr)cos(kt)sin(nt)sintdt 
o 0 k=-oo . 

27t' 00 . 

= - 1 L Kk(wmR)Ik(wmr ) cos (kt)[cos (n + l)t - cos (n -l)t]dt 
o k=-oo 

= -27r[Kn+l(WmR)In+1(wmr) - Kn- 1 (wmR)In- 1 (wmr)] 

(care has been taken to verify that the above is true for the case n=l as well) 
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The final expression for Ar in the region ~ can now be written as 

and for the region r~R, we interchange the arguments of the Bessel functions and write, 

with evident continuity at the interlace r=R. 

Alternatively with the relation : 

T/ ( R)l ( ) _ T/ ( R)l ( ') _ 2 [K~(WmR)In(Wmr) Kn(WmR)I~(Wmr)l 
·Ll.n+l Wm n+l wmr .Ll..n-l Wm n-l wmr - n (wmr) + (wmR) 

we may express the vector-potential in terms of Bessel functions and their ~erivatives of order n only. 

The () component of A 

The vector-potential in the 0 direction is : 

Ao. Po JJ {-~ I: I: Gn,mcos(n~o -wmZo) cos (0 -Oo)dOodzo } 
. .. 411'" ". po n=l m=l Kn(wmR) J R2 + r2 + (z - zO)2 - 2Rr cos (0 - (0) 

With 
cos (nOo - wmzo) = cos (n()"":' wmz) cos (nt - WmS) - sin (n() - wmz) sin (nt - wms) 

and use of the working variables, we alternatively write : 

Au = _~ "" "" Gn,m V R2 + r2'+ s2 - 2Rr cos t 
[

cos(no-wmz)JJ cos(nt-wms)costdsdt ] 

411'" L:: ~ K~(wmR) . ( 0 )JJ .sin(nt-wms)costdsdt 
n-l m-l - sm n - WmZ 

" VR2 + r2 + s2 - 2Rr cost 

• First (umble integral 
For the first double integral and in recognition of the "summation theorem" and that odd functions integrate 
to 0 over ±oo 

~oo boo boo 

J J 
cos(nt -wms)costdsdt = J J cosntcos(wms)costdsdt + J J sinntsin(wms)costdsdt 

V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t 
o -00 0 -00 0 -00 

271" 

= 2 J cos (nt) costKo (wmJR2 + r2 - 2Rr cost)dt + 0 

o 
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Again, using the orthogonality properties of circular functions, the identities I_n = In ,](-n =](n and 
the fact that 

1 
cos nt cost = 2"[cos (n + l)t + cos (n - l)t] 

the above expression for the double integral reduces, for ~, to 

271" 271" 00 

2 J ](0 (WmVR2 +.r2 - 2Rrcost) cos (nt) costdt = 2 J L ](1o(wmR)h(WkT) cos ktcos (nt) costdt 
o 0 k=-oo 

271" 

= 2 J [Kn+l(WmR)In+I(wkr) cos2 (n + l)t + ](n-l(wmR)In-1(Wkr) cos2 (n -l)t]dt 
o 

= 21r[](n+I(wmR)In+l(Wkr) + ](n-l(wmR)In-l(Wkr)] 

• Second double integral 
Similarly, we demonstrate that the second double integral vanishes, 

koo koo koo 

J J sin (nt - wms) cos tdsdt = J J sin nt cos (wms) cos tdsdt _ J J cos nt sin (wms) cos tdsdt 
V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t V R2 + r2 + s2 - 2Rr cos t 

o -00 0 -00 0 -00 

271" 

= 2 J ](0 (WmVR2 + r2 - 2Rrcost) sin (nt) costdt + 0 

o 

and in recognition of the orthogonality properties of circular functions, I_n = In and K_n =](n and the 
fact that 

sin nt cos t = ~[sin (n + l)t + sin (n -l)t] 

we may write for ~, 

k k 00 

2 J ](0 (WmVR2 + r2 - 2Rr cost) sin (nt) costdt = 2 J L K1o(WmR)Ik(wmr) cos (kt) sin (nt) costdt 
o 0 10=-00 

2lr 00 

= - J L K1o(WmR)I1o(wmr) cos (kt) [sin (n + l)t + sin 
o 10=-00 

=0 

The final expression for Ao in the region ~ can now be written as 
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and for the region r~, we may interchange the arguments of the Bessel functions and write 
, 

with evident continuity at the interface r=R. 

Alternatively with the relation : 

we may express the vector-potential in terms of Bessel functions and their derivatives of order n only. 

The M;agnetic Field Components 
We shall proceed and derive the magnetic field directly from the vector-potential, a process that may as well 

serve as a check for such a field when compared with similar results obtained from the scalar potential as shown 
in referenceb.-

Accordingly, 

The z component of jj 

With the vector-potential derived earlier, we proceed in deriving the field expression in the region t$R ., -
Bz = (\7 x X) = ~ [o(rAe) _ OAr] 

z r or 00 

8(rAe) 1 "" '""" Gn m 8r = - '2 ~~ K~(w'mR) [Kn+l(WmR)In+1(wmr) + J(n-l (wmR)In- 1 (wmr)] cos (nO - wmz)+ 

1"" "" Gnm(wmr) [' )' (] ) - 2~~1 J(~(wmR) Kn+l(WmR)In+1(wmr)+J(n-l(WmR In- l wmr) cos(nO-wmz 

8~r = ~ ~ l; J(:f;~"'R) [Kn+I(WmR)In+1(wmr) - J(n-l(wmR)In- 1(wmr)] cos (nO - wmz) 

Therefore: 

, Bz = .;:.~ L L 1(' (::~)(:mr) {Kn~t-1(wmR)In+l(Wmr) + Kn-I(WmR)In-I(Wmr)+ 
. n=lm=l n 

+ (wmr) [Kn+1(wmR)I~+l(Wmr) + Kn-I(WmR)I~_l(Wmr)] + 

+ n[Kn+1(wmR)In+l(wmr) - Kn-l(WmR)In-l(wmr)]} cos (nO - wmz) 
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Applying the relations : 
I 

xIn+I + (n + l)In+l = xIn 
I 

xIn_1 - (n -1)In- 1 = xIn 
I 

Kn+l + Kn-l = -2Kn 

(where x corresponds to the Bessel function argument), the squiggly brackets reduces to : -2(wmr)K~In and 
the field in the region r~ is : 

Bz = L L Gn,mwmIn(wmr) cos (~e - wmz) 
n=lm=l 

Similarly applying the above procedure to the region r~ , 

as it showed be. 

The r component of B 

We continue and derive the radial field expression in the region ~, 

Br = (\7 x X) = ~ 8Az ~ 8Ao 
r r 8e 8z 

18Az _ ~ ~ n2Gn,mwmKn(wmR) . 
-:;: 8e -~;:;. K~(wmR)(wmR)(wmr)In(w~r)sm(nO -wmz) 

8~o = _ ~ ~ ~ I~n(::~) [Kn+l(WmR)In+I(w~r) + Kn-l(WmR)In-l(Wmr)] sin (nO - wmz) 

Therefore, 

1 ~ ~ Gn mWm [2n2 () ( ) 
Br ='2~;:;' K~(wmR) (wmR)(wmr)Kn wmR In wmr + 

+ Kn+I (wmR)In+1 (wmr) + Kn- 1 (wmR)In- 1 (wmr)] sin (nO - wmz) 
1 ~ ~ Gn mWm 1 ] . ='2 ~;:;. K~(wmR) 2 [(I{n+l(wmR) + Kn-l(WmR))(In+l(Wmr) + In-l (Wmr)) sm(nO - wmz) 

and introducing the relations 
I 

2In = In-l + In+I 
I 

-2I{n = Kn- 1 + Kn+l 
2nIn = a(In-l - In+1) ; a = wmr 

-2nKn = b(Kn- 1 - Kn+1) ; b = wmR 
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(with two different arguments) the radial field component in the region ~ is : 

Br = - L L Gn,mwmI~(wmr)sin(nO -wmz) 
n=lm=l 

and similarly applying the above procedure to the outer region r~ we get, 

as it showed be. 

The 0 component of B 
In deriving the azimuthal field component in the region ~, 

Bo = (\7 x 1) = oAr _ oAz 

6 OZ or 
oAr 1 '" '" Gn,mwm ' OZ = -2" ~ ~ K~(wmR) [Kn+1 (WmR) In+l (wmr) - Kn-l(WmR)In-l(Wmr)] cos (nO - wmz) 

oAz _ '" '" nGn,mKn(wmR) I or - -~~ RK~(wmR) In(wmr) cos (nO -wmz) 

Therefore, 

B. = - f, f. RI~ft~:R) { w;n
R

[[(.+1 (wmR)I.+1 (wmr) - [(.-1 {wmR)I._1 (wmr )]- [(. (WmR)I~{wmr) } 

x cos (nO - wmz) 
and introducing the relation 

Kn+l(WmR)In+l(Wmr) - Kn-l(WmR)In-l(Wmr) = 

= 2n [K:(WmR)In(Wmr) + Kn(WmR)I~(Wmr)l 
wmr wmR 

the 0 field component in the region ~ is : 

and similarly by applying the above procedure to the outer region r~ we get, as it should be. 

as it showed be. 
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.... 
The divergence of A - a check 

As a final check, we shall show that the divergence of A vanish throughout space including r=R, 

\7 . A = 1 o(r Ar) + ~ oAo + oAz = 0 
r OT r 00 OZ 

We first check the divergence in the region ~ 

~ O(~~r) = ;r ~ l; K~~~=R) ([Kn+I(wmR)In+I(wmr) - Kn-l(WmR)In-l(wmr)]+ 

+ wmr [K~~l(4'mR)I:+I(Wmr) - f{n-l (wmR)I:_l (WmT)] } sin (nO - wmz) 

1 oAo 1"" nGn,m [ ( ( )]. ( ) -;: 00 = 2r ~~ K~(wmR) Kn+l(WmR)In+l wmr) + Kn-1(wmR)In-l wmr sm nO -WmZ 

oAz " " nGn,mKn(wmR) . ( ) 
oz = -~~ RK~(wmR) In(WmT)sm nO -WmZ 

Therefor: 

.... "" nGn,m R ] \7. A = ~~ 2RK~(wmR) {nr[Kn+I(wmR)In+I(wmr) - Kn-l(WmR)In-l(wmr) + 

+ w:R [Kn+I(wmR)I:+l(Wmr) - Kn-l(wmR)I:_l(Wmr)] + 

+ R[Kn+l(WmR)In+l(Wmr) + Kn- 1 (wmR)In-l (wmr)] - 2Kn(wmR)In(wmr)} sin (nO - wmz) 
r 

" " nGn 
m R [ '] = ~ ~ 2RK~(~mR) {m: Kn+l(WmR) (n + l)In+l(wmr) + (wmr)In+1(wmr) -

-! Kn-l(WmR) [-en -l)In-l(WmT) + (wmr)I:_1(wmr)] - 2Kn(wmR)In(wmr )} sin (nO - wmz) 

Applying the identities with different arguments a,b : 
I 

(n + 1)In+1 + aIn+I = aIn ; a = wmr 
I 

- (n -l)In-l + aIn_1 = aIn 

b(Kn+1 - Kn- 1) = 2nKn ; b = wmR 

the divergence vanish, 

\7 . A = ~ l; 2R~~(~:R) [2KnIn - 2KnIn] sin (nO - wmz) = 0 

In the region r~ we interchange the 1's with the K's and make use of, 
-

(n + 1 )Kn+I + aK:+1 = -aKn j a = WmT 

-en -1)Kn - 1 + aK~_I = -aKn 
-b(In+l - In-I) = 2nIn j b = wmR 

the divergence vanish as well, 

. \7 . A = ~ l; 2R~~(~:R) [2KnIn - 2KnIn] sin (nO - wmz) = 0 
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The stored energy in multipole helical windings 
Now, it is only a hop skip and a jump to apply the vector-potential in calculating the stored energy in helical 

devices. From the definition of the energy, 

IJJJ'" ..... E='2 J ·Adv 

We recognize that we need integrate the vector product over the current surface only and divide. the stored energy 
, • I 

by the volume of integration taken here as extending over the period 2L. 

2:r L 'E 1 JJ ...... e = V = 2(7rR22L) J. AdO' 
o -L 

(the current density is generally per unit area but when applied to thin windirigs is per unit length, the energy 
density is~ = T~A). 

The most general expression for J. A on the surface r=R is : 

We shall omit writing the argument wmR in both Bessel functions I and K. . 

Making use of the orthogonality properties of circular functions, 

J
kJL . {~m 

cos (nO - WmZ) cos (to - wjz)RdOdz = 0 
m=J 
m#j 

o -L 

the only terms that due not vanish, are for n=i and m=j, therefor : 

The term in the above bracket may be reduced by applying the relation : 

resulting in : 
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We express the energy density in terms of c~ent density using the relations from referenceg 

'", 

where e denotes the direction of current flow in the helix. In terms of the total current per pole Ipole, we have : 

and inversely we may write, 

Gnm = , 

Gnm = , 

so that the energy density can be written as : 

2 I 

JOeJ1.owmR Kn 

.Jn2 + (wm R)2 

IpoleJ1.0wmRK~ 
2 

2Gnm , 

The limiting 2 dimensional case 

As a farther simplification and a check, we reduce the results obtained for helical devices by extending the 
periodicity to infinity, limL_oowm = 0, and compare those with more familiar 2D cases of multipole magnets. 

With 
s -+0 

1 (s)n In(s) -+ n! '2 
Kn(s) -+ (n ~ 1)! (i)-n 

I 1 (S)n-l 
In(s) -+ 2(n -I)! '2 

I n! (s)-(n+l) 
]( (s) -+ -- -

n 4 2 

g Forces in a Thin Cosine(nO) Helical Wiggler, LBL-36988, SC-MAG-495, March 1995. 
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The 2D vector-potential reduces to : 

for r ~ R 

Jor r ~ R 

and the stored energy is : 

Example - dipole, n=l 

We have calculated and plotted (using mathcad) the magnitUde of the vector-potential components for a dipole 
n=l, with a single period m=l, WI = t, and a half period length of 1..=2.0 cm. As a parameter we varied the 
winding radius, R=1.0, 1.5, 2.0, and 2.5 cm. 
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Figure 1 The magnitude of the three vector-potential components in a dipole 
helix with a period 2L=4.0 em, z=O (for Ar 8=90 and for A8 and Az at 8=0) . 
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Appendix A Field Components 

The field components, derived from a scalar potential, in the region interior to the windings r<R (from 
referenceb): 

The field components in the region exterior to the windings r>R are : 
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